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Abstract 

Worldwide, groundwater resources are under a constant threat of overexploitation and pollution due to 1 

anthropogenic and climatic pressures. For sustainable management and policy making a reliable prediction of 2 

groundwater levels for different future scenarios is necessary. Uncertainties are present in these groundwater 3 

level predictions and originate from greenhouse gas scenarios, climate models, conceptual hydro(geo)logical 4 

models (CHMs) and groundwater abstraction scenarios. The aim of this study is to quantify the individual 5 

uncertainty contributions using an ensemble of 2 greenhouse gas scenarios (representative concentration 6 

pathway 4.5 and 8.5), 22 global climate models, 15 alternative CHMs and 5 groundwater abstraction scenarios. 7 

This multi-model ensemble approach was applied to a drought prone study area in Bangladesh. Findings of this 8 

study, firstly, point at the strong dependence of the groundwater levels on the CHMs considered. All 9 

groundwater abstraction scenarios showed a significant decrease in groundwater levels. If the current 10 

groundwater abstraction trend continues, the groundwater level is predicted to decline about 5 to 6 times faster 11 

for the future period 2026-2047 compared to the baseline period (1985–2006). Even with a 30% lower 12 

groundwater abstraction rate, the mean monthly groundwater level would decrease by up to 14 m in the 13 

southwestern part of the study area. The groundwater abstraction in the northwestern part of Bangladesh has to 14 

reduce by 60% of the current abstraction to ensure sustainable use of groundwater. Finally, the difference in 15 

abstraction scenarios was identified as the dominant uncertainty source. CHM uncertainty contributed about 23% 16 

of total uncertainty. The alternative CHM uncertainty contribution is higher than the recharge scenario 17 

uncertainty contribution, including the greenhouse gas scenario and climate model uncertainty contributions. It is 18 

recommended that future groundwater level prediction studies should use multi-model and multiple climate and 19 

abstraction scenarios. 20 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-580
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 10 December 2018
c© Author(s) 2018. CC BY 4.0 License.



2 
 

Keywords  21 

Multi-model ensemble approach; Groundwater modelling; Conceptual models; Climate change; Abstraction 22 

scenarios; Uncertainty. 23 

1. Introduction 24 

Groundwater is one of the major sources of high-quality fresh water across the world and one of the most 25 

important but scarce natural resources in many arid and semi-arid regions. However, these resources are under a 26 

constant threat of overexploitation and pollution all over the world due to anthropogenic and climatic pressure. 27 

Globally, groundwater provides 45 – 70 % of irrigation water (Döll et al., 2012; Shamsudduha et al., 2011; 28 

Taylor et al., 2013; Wada et al., 2014, 2013; Wisser et al., 2008) and the use of groundwater is continuously 29 

increasing. Overexploitation of groundwater for irrigation is worldwide one of the main causes of groundwater 30 

level depletion (Mustafa et al., 2017a; Rodell et al., 2009; Scanlon et al., 2012; Wada et al., 2014). Climate 31 

change will probably also have an impact on the future availability of the groundwater resources (Brouyère et al., 32 

2004; Chen et al., 2004; Goderniaux et al., 2011, 2009; Scibek et al., 2007; Taylor et al., 2013; van Roosmalen et 33 

al., 2009; Woldeamlak et al., 2007). 34 

Food security of Bangladesh is highly dependent on sustainable use of groundwater for irrigation. However, in 35 

the northwestern part of Bangladesh, these resources are under a constant threat of overexploitation due to 36 

anthropogenic pressure. Mustafa et al. (2017a) report that overexploitation of groundwater for irrigation is the 37 

main cause of groundwater level decline in the northwestern part of Bangladesh. In this context, the government 38 

of Bangladesh has plans to use more surface water instead of groundwater. However, the amount of groundwater 39 

that can be sustainably used for irrigation is still unknown. Also, the probable impact of shifting to more surface 40 

water use instead of groundwater is also unknown. Hence, research is needed to quantify the amount of 41 

groundwater that can be abstract sustainably for irrigated agriculture in the northwestern part of Bangladesh. 42 

Accurate predictions of groundwater systems, as well as sustainable water management practices, are essential 43 

for policy making. Transient numerical groundwater flow models are used to understand and forecast 44 

groundwater flow systems under anthropogenic and climatic influences. They provide primary information for 45 

decision-making and risk analysis. However, the reliability of groundwater model predictions is strongly 46 

influenced by uncertainties resulting from the model parameters, input data, and the CHMs structure (Refsgaard 47 

et al., 2006). Also, formulation of unknown future conditions, such as climatic change scenarios and 48 

groundwater abstraction strategies, increases the uncertainty in groundwater model predictions. 49 
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It is important to assess the different sources of uncertainty to ensure accurate prediction and reliable decision 50 

support in sustainable water resources management. The conventional treatment of uncertainty in groundwater 51 

modelling focuses on parameter uncertainty. Uncertainties due to model structure and due to scenario change are 52 

often neglected (Gaganis and Smith, 2006; Rojas et al., 2010). However, many researchers have recently 53 

acknowledged that the uncertainty arising from the CHMs structure has a significant effect on model prediction 54 

(Neuman, 2003; Refsgaard et al., 2006). The incomplete and biased representation of the processes and the 55 

complex structure of a geological system often result in uncertainty in model prediction (Refsgaard et al., 2006; 56 

Rojas et al., 2008). Højberg & Refsgaard (2005) presented a case of a multi-aquifer system in Denmark by 57 

building three different CHMs using three alternative geological assumptions. They found that CHMs structure 58 

uncertainty dominated over parameter uncertainty when the models were used for extrapolation. Many studies 59 

have recently suggested that uncertainty derived from the definition of alternative CHMs is one of the major 60 

sources of total uncertainty, and the parameter uncertainty does not cover the entire uncertainty range 61 

(Bredehoeft, 2005; Neuman, 2003; Refsgaard et al., 2006; Rojas et al., 2008; Troldborg et al., 2007). Therefore, 62 

neglecting the CHM uncertainty may result in unreliable prediction and underestimate the total predictive 63 

uncertainty. 64 

Studies using a single CHMs may fail to adequately sample the relevant space of plausible CHMs. Single model 65 

techniques are unable to account for errors in model output resulting from the structural deficiencies of the 66 

specific model. Rojas et al. (2010) noted that a CHM is assumed to be correct when the model is calibrated and 67 

validated successfully following an appropriate method as described by Hassan (2004a, 2004b). However, a 68 

well-calibrated model does not always accurately predict the behaviour of the dynamic system (Van Straten and 69 

Keesman, 1991). Bredehoeft (2005) presented different examples where data collection and unforeseen elements 70 

challenged well-established CHMs. Choosing a single model out of equally important alternative models may 71 

contribute to either type I (reject true model) or type II (fail to reject false model) model errors (Li and Tsai, 72 

2009; Neuman, 2003). 73 

Although the concept of using alternative CHMs is increasing applied among surface water modellers, in 74 

groundwater modelling the use of multi-model methods are limited. Recently, some studies have used multi-75 

model methods in groundwater modelling to quantify the CHM uncertainty (Li and Tsai, 2009; Rojas et al., 76 

2010). However, conceptual model uncertainty arising from the simplified representation of the hydro(geo)logic 77 

processes, geological stratification and/or boundary conditions has received less attention (Refsgaard et al., 78 

2006; Rojas et al., 2010). Rojas et al. (2010), investigated uncertainty related to alternative CHM structures and 79 
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recharge scenarios in groundwater modelling. However, the uncertainty arising from other sources such as 80 

General Circulation Models (GCMs), Regional Circulation Models (RCMs), downscaling methods and 81 

abstraction scenarios in groundwater flow modelling still needs to be included in such approaches.  82 

Climate change may significantly impact groundwater recharge. Recharge is one of the major input data in 83 

groundwater levels simulation. The future groundwater recharge is unknown, so it should be estimated based on 84 

different future climate scenarios. The GCMs project different climate scenarios based on the greenhouse gas 85 

emission scenarios (GHSs). The Special Report on the Emission Scenario-SRES (Nakicenovic et al., 2000) has 86 

reported different GHG emission scenarios. Besides, there are many GCMs to predict climate scenarios, and 87 

different GCMs use a different representation of the climate system (Flato et al., 2013; Gosling et al., 2011; 88 

Teklesadik et al., 2017). That means that different GCMs develop different climate projections for a single GHG 89 

emission scenario. Therefore, uncertainties arise in climate projections from GCMs and GHG emission 90 

scenarios. Another important source of uncertainties in climate projection is the internal variability of the climate 91 

system, i.e., the natural variability of the weather (Deser et al., 2012). Future climate change uncertainty arises 92 

from three main sources: external forcing, climate models response and internal variability (Hawkins and Sutton, 93 

2009; Tebaldi and Knutti, 2007). Using an ensemble of climate scenarios has become common practice in 94 

analysis of climate change impact in the field of hydrology. Uncertainty analysis of groundwater simulations 95 

related to climate change has received relatively limited attention (Goderniaux et al., 2009; Taylor et al., 2013). 96 

Holman et al. (2012) recommended that climate scenarios from multiple GCMs or RCMs should be used to 97 

predict the impact of climate change on groundwater. Recently, several researchers have studied the impact of 98 

climate change on the groundwater system incorporating uncertainty from the input of different GCMs or RCMs 99 

scenarios and different greenhouse gas emission scenarios (Ali et al., 2012; Dams et al., 2012; Jackson et al., 100 

2011; Neukum and Azzam, 2012; Stoll et al., 2011; Sulis et al., 2012). The uncertainty analysis is, however, 101 

usually limited to the climatic part. Very recently, Goderniaux et al. (2015) included uncertainty related to model 102 

calibration in predicting groundwater flow along with uncertainty from the GCMs and RCMs and downscaling 103 

methods. However, the uncertainty arising from other sources, such as the model conceptualization and 104 

abstraction scenarios, is not evaluated. 105 

Groundwater levels are often heavily influenced by the groundwater abstraction rate. For example, in the Indian 106 

subcontinent, groundwater abstraction has increased from 10-20 km
3
/year to approximately 260 km

3
/year during 107 

the last 50 years (Shamsudduha et al., 2011). In the northwestern part of Bangladesh, about 97% of the total 108 

groundwater abstraction is used for irrigated agriculture (Mustafa et al., 2017a; Shahid, 2009). Shahid (2011) 109 
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found an increasing trend in irrigation application rate in Boro rice, the major irrigated crop in the area. Details 110 

on current groundwater abstraction, trends in the abstraction and irrigated area can be found in Mustafa et al. 111 

(2017a). This increasing trend is ascribed to climate change. In contrast, improvement in agricultural water use 112 

efficiency can reduce the water use in irrigated agriculture. Therefore, multiple abstraction scenarios should be 113 

used to predict a reliable uncertainty band.  114 

Existing literature on future groundwater level prediction uncertainty quantification has focused on hydrological 115 

model calibration and climate model uncertainty considering one single CHM and parameter uncertainty. As far 116 

as the authors are aware, little research has been done so far to quantify future groundwater level prediction 117 

uncertainty considering the uncertainty arising from the CHM structure, climate change and groundwater 118 

abstraction scenarios. This is the first attempt to evaluate the combined effect of CHM structure, the climate 119 

change and groundwater abstraction scenarios on future groundwater level prediction uncertainty.  120 

The general objective of this study is to quantify groundwater level prediction uncertainty in climate change 121 

impact studies using a multi model ensemble, i.e. an ensemble of representative concentration pathways, global 122 

climate models, multiple alternative CHMs and abstraction scenarios to provide probabilistic and informative 123 

predictions of groundwater levels. The specific objectives to achieve the general goal of this study are to: (i) 124 

quantify the groundwater level prediction uncertainties arising from the definition of alternative CHMs; (ii) 125 

analyse the effect of climate change on the groundwater levels using ensemble global climate models and 126 

estimate the uncertainty linked to climate scenarios; (iii) analyse the effect of groundwater abstraction scenarios 127 

on the future groundwater levels; (iv) quantify the amount of water that can be abstracted sustainably for 128 

irrigated agriculture in the northwestern part of Bangladesh (v) evaluate the combined effect of CHMs structure, 129 

the climate change and groundwater abstraction scenarios on future groundwater level prediction uncertainty; 130 

and (vi) compare the uncertainty arising from the alternative CHMs, climate scenarios and abstraction scenarios. 131 

2. Methodology 132 

2.1 Study area 133 

The study area is located in the northwestern part of Bangladesh (Figure 1a). The study area is a subtropical 134 

region with two distinct seasons: the dry winter season (November to April) and the rainy monsoon season (May 135 

to October). The average annual precipitation amount varies between 1400 and 1550 mm but is not uniformly 136 

distributed over the year (Supplementary materials: Figure SM-2). Almost 83% of the total annual amount 137 

occurs in the monsoon season. The average temperature varies between 25–35 °C for March to June, and 9–15 138 
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°C for November to February. Groundwater depth in the study area is continuously increasing (Supplementary 139 

materials: Figure SM-3). The study area consists of six northwestern districts (Rajshahi, Naogaon, C’Nawabganj, 140 

Joypurhat, Bogra and Nator) and cover about 7112 km
2
. In comparison to other districts of Bangladesh, these 141 

districts are more affected by drought (Shahid and Behrawan, 2008). The study area is situated between latitude 142 

24°19´´0´´ N to 25°12´0´´ N and longitude 88°6´36´´ E to 89°31´12´´ E. The surface elevation in the study area 143 

varies from 11 m to 40 m (Supplementary materials: Figure SM-1). There is a mild gradient towards the 144 

southeast corner and this corner is close to a large wet-land. 145 

The aquifer in the study area is comprised of several layers such as clay, loamy clay, fine sand, medium sand, 146 

coarse sand and gravel with a dominance of medium to coarse sand (Figure 1c). The thickness of each 147 

stratigraphic unit moreover varies spatially. The top layer consists of clay, clayey loam and fine sand with an 148 

average thickness of 18 m. It is underlain by a 20 m thick medium sand layer. Below the medium sand layer, a 149 

35 m thick layer of coarse sand and coarse sand with gravel is present. The upper aquifer is unconfined or semi-150 

confined with a thickness ranging from 10 m to 40 m (Asad-uz-Zaman and Rushton, 2006; Faisal et al., 2005; 151 

Jahani and Ahmed, 1997; Michael and Voss, 2009a; Rahman and Shahid, 2004). The area is dominated by 152 

agriculture and almost 80 % is crop land. Irrigated agriculture plays an important role in the food production and 153 

security of Bangladesh, home to over 150 million people. In the northwestern part of Bangladesh irrigated 154 

agriculture is the major user of groundwater and accounts for 97 % of total groundwater abstraction (Shahid, 155 

2009). Overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-156 

level decline in areas where abstraction is high and surface geology inhibits direct recharge to the underlying 157 

shallow aquifer (Mustafa et al., 2017a). 158 
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 159 

Figure 1: Description of the study area: (a) Location of the study area in the northwestern part of Bangladesh; (b) 160 

study area with precipitation measurement stations (triangles) and groundwater observation wells (circles); (c) 161 

stratigraphy of the study area; (d) cross-sectional (A-A’) view of different models: (a) one-layered model (L1), 162 

(b) two-layered model (L2), (c) three-layered model (L3).  163 

2.2 Data 164 

Thirty-two years (1979–2011) of weekly groundwater level and daily precipitation data of the Bangladesh Water 165 

Development Board (BWDB) and Bangladesh Meteorological Department (BMD) were collected from the 166 

Water Resources Planning Organization (WARPO), Bangladesh, for respectively 140 and 30 sites in the study 167 

area. Available river discharge data of the BWDB for the existing small rivers within the study area were also 168 
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collected from WARPO. Daily minimum and maximum temperature, wind speed and other climatic data were 169 

collected from the BMD for all the available stations in the country. Reference evapotranspiration (ET0), 170 

considered as potential evapotranspiration in this study, was calculated using the FAO Penman-Monteith 171 

equation from the observed climatic data (Allen et al., 1998; Mustafa et al., 2017a). 172 

The monthly observed groundwater head data of 50 observation wells were used for model calibration and 173 

validation and are plotted in a box-plot (Supplementary materials: Figure SM-2). The groundwater levels vary 174 

between 3 to 22 m above mean sea level (amsl) and display a clear seasonal variation. The groundwater level is 175 

relatively low in April and high in October. 176 

The hydraulic properties of the aquifers were selected based on observed data and previous reports on the 177 

geology and lithology of the study area (Michael and Voss, 2009a, 2009b). Topography and borehole data were 178 

collected from Barind Multipurpose Development Authority (BMDA), Bangladesh. The log data from twenty-179 

three boreholes within the study area were collected from BMDA. 180 

The climate model data is available through the website of the Earth System Grid Federation 181 

(https://esgf.llnl.gov). 182 

2.3 MODFLOW model 183 

Processing MODFLOW or PMWIN (Chiang and Kinzelbach, 1998) is a physically-based, fully-distributed, grid 184 

based, integrated simulation system for modelling groundwater flow and pollution. PMWIN was designed as a 185 

pre- and postprocessor for the groundwater flow model MODFLOW (Harbaugh and McDonald, 1996; 186 

McDonald and Harbaugh, 1988) to bring various codes together in a simulation system. The MODFLOW model 187 

is a physically-based, fully-distributed three-dimensional finite-difference numerical flow model developed by 188 

the U.S. Geological Survey (USGS). MODFLOW solves the three-dimensional partial-differential groundwater 189 

flow equation for porous media using a finite-difference method. 190 

2.4 Multi-step multi-model methodology 191 

A four-step methodology was used to achieve the objectives of the study (Figure 2). In the first step, the climate 192 

model data for precipitation, minimum, mean and maximum temperature and ET0 were extracted and 193 

downscaled as explained in section 2.6. In the second step, monthly groundwater recharge was simulated using a 194 

spatially distributed water balance model (WetSpass) (Abdollahi et al., 2017; Batelaan and De Smedt, 2001) for 195 

the baseline period and for different scenarios as explained in sections 2.5.2 and 2.7. In the third step, 15 196 

alternative conceptual hydrogeological models were constructed using different geological interpretations and 197 
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boundary conditions. All alternative CHMs were calibrated using observed groundwater level data. The 198 

performance of each model was evaluated based on different performance evaluation coefficients and 199 

information criterion statistics. The Bayesian model averaging (BMA) method was applied to obtain an average 200 

prediction from the alternative models. Also, the performance of alternative models was evaluated based on the 201 

maximum likelihood BMA weight of each model. The better performing models among the alternative models 202 

were used to project groundwater levels under different climatic and abstraction scenarios. The averaged 203 

projection and its uncertainty were estimated using BMA of the ensemble of alternative CHMs. In the final step, 204 

climate change impact was assessed. The details of the different materials and methods of each step are 205 

described in the following sections. 206 
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 207 

Figure 2: Multi-step multi-model methodology. GCM: General Circulation Model; RCP: Representative 208 

Concentration Pathway; ET0: potential evapotranspiration; P: precipitation; T: temperature; DEM: digital 209 

elevation model; BMA: Bayesian model averaging. 210 
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2.5 Alternative conceptual groundwater flow models  211 

To estimate the uncertainty due to the conceptualization of groundwater models, 15 different alternative CHMs 212 

were developed based on geological stratification and boundary conditions. The cross sectional (A-A') view of 213 

the models is shown in Figure 1d. First, three simplified alternative conceptual groundwater models were defined 214 

based on the geological stratification. The three models are a one-layered (L1), two-layered (L2) and three-215 

layered (L3) model. In the one-layered model (L1), the entire model domain was considered as one hydro-216 

stratigraphic unit and the hydraulic properties are assumed homogeneous and isotropic. The two-layered model 217 

(L2) consists of two layers where the average thickness of the top layer was 10 m (clay and loamy clay soil) and 218 

rest of the thickness was considered as the bottom layer. The model domain was divided into three different 219 

hydro-stratigraphic units to develop a three-layered model (L3). Below the top layer, a fine sand layer with an 220 

average thickness of 8 m was added in the three-layered model. The bottom layer of three-layered model consists 221 

of medium sand, coarse sand and coarse sand with gravel. 222 

Boundary conditions strongly influence the CHM uncertainty (Wu and Zeng, 2013). They are often very 223 

uncertain, and, moreover, strongly influence the model results. Previous studies in the Bengal basin (Michael and 224 

Voss, 2009a, 2009b) identified a north to south groundwater flow direction. On the other hand, there is a large 225 

wetland at the southeastern corner of the study area as well as a large river (known as Ganges/Padma) within a 226 

few kilometers from the south boundary. Since exact boundary conditions were not known, based on above 227 

information, five different potential sets of boundary conditions were conceptualized and shown in Figure 3. For 228 

boundary condition B1, a no flow boundary condition was assumed on every side of the model. In other words, 229 

there is no interaction between the model domain and the environment (Michael and Voss, 2009a, 2009b). For 230 

boundary condition B2, a constant head boundary is assumed at the north side where most of the river branches 231 

originated assuming that groundwater flow direction is parallel to the river flow and perpendicular to the model 232 

boundary. No flow boundary conditions were assumed for all other sides. For boundary condition B3, a constant 233 

head boundary was considered on the north side like for B2 and southeastern side, i.e. the side where a large 234 

wetland is located. Boundary condition B4 is based on boundary condition B3. The constant head boundary in 235 

the southeastern part of the model was extended to the south part of the model domain in boundary condition B4 236 

because the great Ganges/Padma river is very near to the south boundary. In boundary condition B5, a constant 237 

head boundary was considered at the north and northwestern boundary and also at the southeastern corner of the 238 

model domain based on the information that groundwater is flowing from north and northwestern to south 239 

(Michael and Voss, 2009a, 2009b). A constant head is assigned at the southeastern corner of the model domain 240 
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representing the Chalan Beel wetland as well. No-flow boundaries are assumed at the south and northeastern 241 

boundaries since these boundaries are parallel to the groundwater flow direction (Michael and Voss, 2009a, 242 

2009b). The long-term monthly average groundwater levels (normal) were considered as the constant 243 

groundwater heads for the constant head boundary. As there is seasonal variability in the groundwater level of 244 

this study area, every month was assigned a different constant groundwater head corresponding to the long-term 245 

average groundwater level for that month.  246 

In total, 15 alternative groundwater models were developed using 5 different boundary conditions and 3 different 247 

layer types. A list of the 15 models is included as supplementary material (Table SM-1). 248 

 249 

Figure 3: Boundary conditions used to develop alternative conceptual models (dark blue line indicates constant 250 

head boundary). B1: no flow boundary; B2: constant head at north boundary; B3: constant head at north and 251 

southeast boundary; B4: constant head at north, south and southeast boundary; B5: constant head at north, 252 

northwestern and southeastern boundary. 253 

2.5.1 Model setup 254 

The BIock Centered Flow Package (BCF) of MODFLOW-96 within the PMWIN interface was used for 255 

groundwater flow simulation. The study area covers an area of 7112 km
2
 discretized into smaller cells having 256 

117 rows and 118 columns. The grid cell dimension is 900 m x 900 m. All models are transient with a monthly 257 

time step. A no-flow boundary is considered at the model domain bottom as the vertical groundwater flow is 258 

restricted by the relatively impermeable hard rock below the aquifer in the study area. On the model top surface, 259 

a spatially distributed recharge boundary is considered. 260 
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The initial groundwater heads correspond to a long-term average groundwater table obtained by running the 261 

models in steady state conditions. 262 

The range of hydrogeological parameter values was selected based on typical values for aquifer materials 263 

(Domenico and Mifflin, 1965; Domenico and Schwartz, 1998; Johnson, 1967) and previous research findings in 264 

the study area (Michael and Voss, 2009a, 2009b). They are listed in supplementary materials. Michael & Voss 265 

(2009b) used 9.4×10
-5

 m
-1

 as specific storage value for Bengal basin. The initial specific storage was taken as 266 

9.4×10
-5

 m
-1 

when it is within the specific storage limits of the aquifer materials according to literature. 267 

Otherwise, the initial specific storage was taken as the average of the maximum and minimum value of the 268 

aquifer materials found in literature. The rivers in the study area are typically small and mainly driven by 269 

precipitation runoff. Generally, there is no flow in the rivers during dry months (January to March). The ―River 270 

flow package‖ of MODFLOW was used to define rivers in the model domain and a third type boundary 271 

condition was assumed for the rivers. Due to lacking field data for river bed materials, the river bed conductance 272 

was obtained through manual calibration: river bed conductance is 0.18 m
2
/s while riverbed thickness is 0.5 m. 273 

2.5.2 Simulation of spatially distributed groundwater recharge 274 

Spatially distributed monthly groundwater recharge was simulated using the WetSpass-M model (Abdollahi et 275 

al., 2017; Batelaan and De Smedt, 2001) on the same grid as the groundwater flow (MODFLOW) model. 276 

WetSpass-M is a physically based distributed model, in which the groundwater recharge is estimated from a 277 

grid-based water balance. To allow land cover heterogeneity within each cell, every raster cell is split into four 278 

fractions: vegetated, bare-soil, open-water and impervious. The water balances of each fraction are used to 279 

calculate the total water balance of a raster cell, whereas recharge is calculated as the residual term of the water 280 

balance for each cell. The inputs of the model are spatially distributed maps of land cover, soil texture, 281 

topography, groundwater depth and climatic data. Precipitation (including of rainy days), ET0, temperature and 282 

wind speed were used as climatic information. Details on model setup and data preparation for groundwater 283 

recharge calculation data can be found in Mustafa et al. (2017a). Monthly groundwater recharge was simulated 284 

for twenty-two years (1985-2006) and considered as the baseline groundwater recharge. 285 

2.5.3 Groundwater abstraction estimation 286 

Groundwater abstraction for irrigation was calculated from the available data. Unfortunately, detailed 287 

groundwater abstraction information e.g. amounts of water pumped from individual wells, co-ordinates of the 288 

abstraction wells, capacity of the pumps or duration of pumping were not available. Hence, the groundwater 289 
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abstraction was assessed based on the irrigated area by shallow tube wells (STWs), deep tube wells (DTWs) and 290 

other irrigation equipment. Upazila-wise (an upazila is the second lowest tier of regional administration in 291 

Bangladesh) yearly seasonal groundwater abstraction for irrigation from the groundwater was calculated using 292 

an empirical equation based on Boro rice irrigation requirements and the irrigated area. The irrigation water 293 

withdrawal was considered as the total abstraction for each upazila. To obtain monthly abstraction for each 294 

upazila, the calculated seasonal abstraction values are initially equally divided over the months of the dry 295 

seasons (November to April). Also, as the location of the pumps is unknown, the total abstraction from each 296 

upazila is initially considered uniformly distributed over the full upazila. Considering the individual upazila as 297 

one zone of abstraction, a total of 34 abstraction zones were considered. Details on the irrigation data can be 298 

found in Mustafa et al. (2017a) and Shamsudduha et al. (2015). 299 

2.5.4 Calibration and validation of alternative CHMs 300 

All alternative CHMs were calibrated for the period 1990-1994. Model parameters were estimated using manual 301 

calibration and automatic calibration. During auto-calibration, PEST (Doherty, 1994) was used to optimize the 302 

model parameter values. 303 

The initial values, allowable ranges and optimized values of the parameters of the different models are given as 304 

supplementary materials (Table SM-2, SM-3, SM-4). One-layered type models were calibrated for three 305 

parameters: horizontal hydraulic conductivity, specific storage and specific yield. The two-layered and three-306 

layered models were calibrated for respectively 8 and 12 parameters. The process of selecting initial values and 307 

the allowable range of the different parameters is described in section 2.5.1. The optimized specific storage of 308 

the one-layered model with boundary condition-5 (L1B5) was 4.92×10
-05

 m
-1

. Michael & Voss (2009b) also 309 

reported a similar specific storage value (9.4×10
-05

 m
-1

) for the Bengal basin. However, different conceptual 310 

models are suggesting different specific storage values within the typical values for aquifer materials depending 311 

on the number of layers and boundary conditions (Table SM-2, SM-3, SM-4). 312 

Using the optimized parameters, each of the alternative CHMs was validated for the period of 1995 to 1999. 313 

2.5.5 Model performance evaluation 314 

The performance of alternative conceptual groundwater models (CHMs) was evaluated using information 315 

criterions, statistical indicators and by graphical presentation of simulated groundwater levels. Root Mean 316 

Square Error (RMSE), Model Residual (error) Variance (σ
2
), Nash-Sutcliffe Efficiency (NSE, Eq. 1) and Percent 317 

Bias (PBIAS, Eq. 2) of the alternative CHMs were calculated using the formula reported by Moriasi et al. 318 
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(2007). Here, variance is defined as the mean squared error between observed and simulated value. The notation 319 

of Mustafa et al. (2017b) has been followed. 320 

 NSE = 1 - 
∑        

  
   

∑      ̅   
   

 (1) 

 PBIAS =[
∑        
 
         

∑   
 
   

] (2) 

 321 

Here, Oi and Si are representing observed and simulated values respectively,  ̅ is the mean of Oi and n is the 322 

number of observations.  323 

NSE varies from – α to +1 and is dimensionless. NSE values closer to 1 mean better simulation efficiency. NSE 324 

values > 0.7, 0.35 – 0.7, 0.0 – 0.35 and < 0.0 represent respectively, excellent, good, fair and poor performance. 325 

The unit of PBIAS is percentage and values closer to zero mean better simulation capacity. Positive and negative 326 

values are indicating respectively underestimation bias and overestimation bias (Gupta et al., 1999). 327 

Information criteria are often used for model ranking (Zhou and Herath, 2017). Different information criteria 328 

such as the Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), Kashyap 329 

Information Criterion (KIC) and Bayesian Information Criterion (BIC) were used to evaluate the alternative 330 

CHMs. 331 

The Akaike information criterion is defined as (Zhou and Herath, 2017): 332 

                (3) 

                 
       

     
 (4) 

    
    

 
 (5) 

Where n is the number of observations (same for all models), p is the number of model parameters = NPE+1, 333 

NPE is the number of process model parameters and    is the residual variance. SWSR is the sum of weighted 334 

squared residuals.  335 

The Bayesian information criterion (BIC) and Kashyap information criterion (KIC) are defined in Eq. (6) and 336 

(7), respectively (Zhou and Herath, 2017): 337 

                    (6) 

     (       )                      |    | (7) 

Where X is the sensitivity matrix (Jacobian matrix). The weighted factor   applies when the errors are 338 

independent from each other. 339 

The different information criteria values were obtained from MODFLOW by running PEST in sensitivity 340 

analysis mode. The best model among the alternative CHMs has a minimum information criteria value 341 
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(minimum AIC or AICc or BIC or KIC) (Zhou and Herath, 2017). A posterior model probability (pk) was 342 

calculated using Eq. (8) for each information criteria method for each alternative CHMs. The posterior model 343 

probability was used to select the best CHMs. The better model corresponds to a larger posterior model 344 

probability (Zhou and Herath, 2017). 345 

    
       

∑         
   

 (8) 

                (9) 

Where AICk is the AIC value for model k and AICmin is the minimum AIC values of all models. The value of    346 

was also calculated for AICc, BIC and KIC. 347 

2.5.6 Bayesian model averaging 348 

Bayesian model averaging (BMA) was used to deduce more reliable predictions of groundwater levels than the 349 

predictions produced by the individual groundwater models. Draper (1994) and Hoeting et al. (1999) present an 350 

extensive overview of BMA. Recently, BMA has received attention of researchers of diverse fields because of 351 

its more reliable and accurate predictions than other model averaging methods. Vrugt (2016) has developed a 352 

model averaging MATLAB toolbox called MODELAVG for post-processing of forecast ensembles. The 353 

MODELAVG has different model averaging methods including BMA and was used in this study. Details of the 354 

model averaging method are described in the MODELAVG manual (Vrugt, 2016). The value of      355 

(maximum likelihood Bayesian weight) was used as a criterion to select the better performing models that have a 356 

significant contribution in model averaging. 357 

The general equation used to calculate the weighted average prediction in various model averaging strategies is 358 

as follows: 359 

  ̃  ∑     

 

   

 (10) 

Where Djk is the bias corrected point forecasts of each model, k= {1,……, K} is model number and j= {1,…..n} 360 

is the forecast number,  ̃ = {  ̃ ,….,  ̃ } is the weighted average forecast for j
th

 forecast number, β ={β1,…., βk} 361 

denotes the weight vector. 362 

2.6 Climate change scenarios 363 

The climate model data for precipitation, minimum, mean and maximum temperature are extracted for the grid 364 

cells covering the reference location within the catchment. This reference location is set at 24.81° north and 365 

88.95° east and is indicated by a red dot in Figure 1b. Using the FAO Penman-Monteith equation based on the 366 

temperature from climate model data, ET0 is calculated. 367 
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Within this case study, CMIP5 (Coupled Model Intercomparison Project Phase 5) climate model runs for RCP 368 

4.5 and RCP 8.5 are considered (Taylor et al., 2012; Van Vuuren et al., 2011). RCP 8.5 is the highest RCP-based 369 

greenhouse gas scenario (GHS) and considers a radiative forcing of 8.5 W/m² by 2100. The corresponding global 370 

temperature rise ranges between 2.6 and 4.8°C. RCP 4.5 is a more intermediate scenario, whereby the radiative 371 

forcing is limited to 4.5W/m² by 2100 and corresponding temperature rise between 1.4 and 3.1°C (IPCC, 2013). 372 

The total climate model ensemble includes 44 runs, where the RCP 4.5 and RCP 8.5 sub-ensembles each include 373 

22 runs. The considered climate model runs are listed in the supplementary materials (Table SM-7). 374 

The goal number six of the United Nations (UN) sustainable development Goals (SDGs) states ―Ensuring 375 

availability and sustainable management of water and sanitation for all by 2030‖. Based on this information, the 376 

climate change signals, are defined between 1975 and 2035, where the control and scenario period range 377 

between 1961-1990 and 2021-2050, respectively. The precipitation and evapotranspiration changes are specified 378 

on a relative basis, while for the temperature changes an absolute basis is considered. Using the delta change 379 

method, the climate change signals are applied to the observed time series (Ntegeka et al., 2014). The delta 380 

change method is a simple statistical downscaling method which applies mean monthly average changes (top 381 

box of figure 2). 382 

2.7 Future groundwater recharge scenario 383 

The projected spatially distributed monthly groundwater recharge was simulated for the 44 projected time series 384 

using the WetSpass-M model (Abdollahi et al., 2017; Batelaan and De Smedt, 2001) as explained in section 385 

2.5.2 and in Mustafa et al. (2017a). The baseline groundwater recharge was calculated for a period of 22 years 386 

(1985–2006). Future groundwater recharge was simulated for the same number of years (2026–2047). Simulated 387 

groundwater recharges of the baseline period were compared to the simulated future groundwater recharge to 388 

estimate the combined influence of the greenhouse gas scenarios or representative concentration pathways, 389 

climate models and internal variability. 390 

2.8 Development of future groundwater abstraction scenario 391 

It is challenging to estimate future groundwater abstraction scenarios because it largely depends on human 392 

activities as well as on climate. In this study, we have developed different future abstraction scenarios. The 393 

groundwater abstraction data of the study area show a linearly increasing trend during 1985 to 2006 (Figure SM-394 

4: Supplementary materials). The increasing rate is different in different groundwater abstraction zones. The 395 

average groundwater abstraction rate in 2006 was about five times higher than that in 1985. A similar increasing 396 
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trend in groundwater abstraction in the study area was also found by Mustafa et al., (2017a). Shahid (2011) 397 

predicts an increasing trend in future irrigation application for Boro rice production due to climate change. He 398 

also predicts that the length of Boro rice growing period may decrease in future which may lead to increased 399 

cropping intensity in the area. Increased cropping intensity may increase the overall yearly groundwater 400 

abstraction rate. Moreover, it is estimated that population of Bangladesh will increase from 145 million in 2008 401 

to 182 million by 2030 (Qureshi et al., 2014). Thus, water use for food production will increase tremendously. 402 

As groundwater is the major source of water in the study area, groundwater withdrawal rate will be much higher. 403 

However, there has not been an effective groundwater abstraction policy before 2017. Recently, the Integrated 404 

Minor Irrigation Policy 2017 and the Groundwater Management Law 2018 for agriculture have been proposed to 405 

ensure sustainable irrigation management. Both the Integrated Minor Irrigation Policy 2017 and the 406 

Groundwater Management Law 2018 have recommended to minimize the groundwater abstraction in the study 407 

area to maintain sustainable groundwater abstraction. They also encourage to use surface water instead of 408 

groundwater for the irrigation. Unfortunately, no quantitative or specific action for example how much 409 

abstraction should be reduced, has been mentioned either in the proposed Integrated Minor Irrigation Policy 410 

2017 or in the Groundwater Management Law 2018. The policy planning and management strategies should be 411 

updated based on the quantitative or specific information. 412 

Groundwater abstraction can be reduced by improving agricultural water use efficiency. The agricultural water 413 

use efficiency is extremely low in Bangladesh. On average, crops use only 25–30% of applied irrigation water 414 

and the rest is lost due to inefficient irrigation systems (Karim, 1997; Mondal, 2010, 2005). Using efficient 415 

irrigation distribution and application techniques can increase agricultural water use efficiency. The BMDA has 416 

introduced a buried PVC pipe water conveyance system in the study area to increase conveyance efficiency to 417 

more than 90%, whereas the national average value is 40% (Rahman et al., 2011). Alternate Wetting and Drying 418 

(AWD) rice irrigation technique can save 30 to 70% of water compared to conventional irrigation methods 419 

(Rahman and Bulbul, 2015). Deficit irrigation in wheat cultivation in the study area can save 121–197 mm of 420 

water per season (Mustafa et al., 2017b). Food habit changes and/or crop diversification may also have an impact 421 

on crop water use efficiency. 422 

Considering the uncertainties on the total groundwater abstraction amount, five different groundwater abstraction 423 

scenarios are developed (Error! Reference source not found.Table 1). The first scenario is developed based on 424 

the current increasing trend. The second scenario assumes an improved irrigation water use. As such the 425 
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conveyance efficiency will compensate the increasing future demand and the groundwater abstraction rate will 426 

remain constant. In other words, this scenario considers the groundwater abstraction rate for 2010. The third, 427 

fourth and fifth scenarios assume respectively 30%, 50% and 60% lower groundwater abstraction, where the 428 

groundwater abstraction rate in 2010 was considered as a basis. 429 

Table 1: Description of future groundwater abstraction scenarios. 430 

Groundwater abstraction 

scenario 

Description 

PLinear  Linear increase of groundwater abstraction rate based on current increasing 

trend 

PConstant Groundwater abstraction rate of 2010 assumed to be constant in future 

PReduced_30  30% less groundwater abstraction than in 2010  

PReduced_50  50% less groundwater abstraction than in 2010  

PReduced_60 60% less groundwater abstraction than in 2010 

 431 

2.9 Uncertainty estimation 432 

The spread of the 95% prediction interval was taken as the uncertainty band of the ensemble. The uncertainty 433 

band was estimated using Eq. (11). 434 

      
       

      
  (11) 

       
 

 
∑     

 

 

   

 (12) 

 435 

Where      
  is the uncertainty band of a time step, Uavg is the average uncertainty band, N is the total number of 436 

predictions,      
 

 and     
 

 represent the 97.5
th

 and 2.5
th

 percentile of the ensemble at a time step, respectively. 437 

In the case of alternative CHM uncertainty quantification, the same abstraction and recharge scenarios of the 438 

baseline period were used to simulate groundwater levels of the 22-year period. To quantify the recharge 439 

scenario uncertainty, the groundwater level was simulated for 44 recharge scenarios by the best performing 440 

groundwater flow model where the groundwater abstraction scenario was kept the same. The groundwater level 441 

was simulated for 5 abstraction scenarios by the best performing groundwater flow model where the same 442 
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recharge scenario was used to estimate abstraction scenario uncertainty. The groundwater levels in 50 443 

observation wells for a period of 22 years were used to estimate the spread of the 95% prediction interval. 444 

The contribution of the different sources of uncertainty in future groundwater level prediction was calculated 445 

considering all the probable combinations of the CHMs, recharge and abstraction scenarios. The average 446 

prediction interval at each time step was calculated using the following equations: 447 

       
  

 

     
∑ ∑         
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Where,       
 ,      

  and      
  represent the average prediction interval at each time step due to CHMs, 448 

recharge scenario and abstraction scenario, respectively. The K, AS and RS represent the number of CHMs, 449 

abstraction scenarios and recharge scenarios, respectively. The         
  is the prediction interval due to different 450 

CHMs for a particular recharge and abstraction scenario. The       
  and       

  represent the prediction interval 451 

due to different recharge scenario and abstraction scenario, respectively for a particular CHMs and 452 

abstraction/recharge scenario. 453 

2.10 Data analysis  454 

For data analysis and plotting, different Matlab, R and Python packages were used such as Pandas (McKinney, 455 

2010), Scipy, ggplot2, Numpy (Walt et al., 2011) and Matplotlib (Hunter, 2007). The null hypotheses for equal 456 

distributions of simulated groundwater levels of alternative CHMs were tested using two-sample Kolmogorov-457 

Smirnov tests (Chakravarti and Laha, 1967). The nonparametric modified Mann-Kendal trend test (Hamed and 458 

Rao, 1998) was conducted to detect trends in annual groundwater level and the slope was estimated using Sen’s 459 

method (Sen, 1968). 460 

3. Results and discussion 461 

3.1 Groundwater levels simulation 462 

The simulated groundwater levels of each alternative groundwater flow model were compared to the observed 463 

groundwater levels as well as to the simulated groundwater levels of the other models. The null hypotheses for 464 
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the equal distribution test between simulation results of alternative models in the calibration and validation 465 

period were tested (Figure 4). A significant difference (significance level of 0.05 or p<0.05) between most of the 466 

alternative model's simulation results was observed. This indicates that the use of different geological 467 

stratifications and boundary conditions in groundwater flow models can result in significant differences in 468 

groundwater levels prediction and confirms the finding of Rojas et al. (2010). In contrast, some of the models did 469 

not predict statistically different results. 470 

 471 

Figure 4: Significance of difference in simulation results for combinations of alternative conceptual models 472 

(p<0.05, two sample K-S test) for (a) calibration and (b) validation period. L1, L2 and L3 are representing 473 

respectively the one, two and three-layered model. B1, B2, B3, B4 and B5 are representing respectively 474 

Boundary condition-1,2,3,4 and 5. For example: L1B1: One-layered model with Boundary condition-1, L3B5: 475 

Three-layered model with Boundary condition-5. 476 

3.1.1 Goodness of fit of alternative CHMs 477 

Based on different statistical coefficients, the performance was different for alternative models, and the models 478 

performed differently in the calibration and validation period (Supplementary materials: Error! Reference 479 

source not found.Table SM-5). 480 

Based on RMSE, σ
2
 and NSE value, the L2B3 model was the best model in the calibration period, whereas in the 481 

validation period it was L2B5. In general, the two-layered models had a relatively lower RMSE and σ
2
 than the 482 

one-layered and three-layered models. 483 

In both the calibration and validation period, PBIAS was negative for one-layered models indicating that the 484 

models were overestimating groundwater head. On the contrast, two-layered and three-layered models generally 485 
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underestimated the groundwater heads as PBIAS was positive in the calibration and validation period. The L2B5 486 

and L2B4 model had the lowest bias in the calibration and validation period, respectively. Overall, the two-487 

layered models outperformed the one-layered and three-layered models in the calibration and validation period. 488 

The simplified one-layered models have a comparatively higher bias in prediction. Comparatively, a large 489 

number of processed parameters made the three-layered models over-parameterized. The three-layered models 490 

performed better than the one-layered models during calibration, but they performed similarly in most of the 491 

cases in the validation period. The performance of the two layered models also differed between calibration and 492 

validation period. It is difficult to calibrate over-parameterized models efficiently (Willems, 2012), so the two-493 

layered models with eight calibrated parameters can be a balance between oversimplified and over-494 

parameterized models. 495 

Figure 5 shows the scatter plot for model L2B5. One of the possible causes of the outliers in the scatter plot and 496 

the differences in model performance between the calibration and validation period is the spatial and temporal 497 

variation in groundwater abstraction. The zone-wise spatially distributed groundwater abstraction rate was one of 498 

the most important input data in this study. In reality, groundwater abstraction varies spatially within those 499 

zones. Agricultural and industrial areas abstract more groundwater than wetlands or forest areas. Moreover, 500 

groundwater abstraction rate also depends temporally on cropping season and precipitation pattern. However, an 501 

average constant groundwater abstraction rate was assumed for six months (from November to April) in the 502 

model. For observation wells close to groundwater abstraction wells, drawdown by groundwater abstraction, 503 

could affect the observed groundwater heads. This spatial and temporal difference in actual groundwater 504 

abstraction and modeled groundwater abstraction caused spatial and temporal variation in simulated and 505 

observed groundwater levels. The simplified representation of hydrogeological properties could be also a 506 

possible cause of the difference between simulated and observed groundwater levels. For simplification, the 507 

aquifer was assumed homogeneous but in reality, the aquifer is heterogeneous and this may affect groundwater 508 

flow in the aquifer. Also measurement errors in observation data influence model performance. 509 
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 510 

Figure 5: Scatter plot for the simulated versus observed groundwater level for Model L2B5: (a) calibration 511 

period and (b) validation period. 512 

3.1.2 Model selection for future groundwater level simulation and uncertainty analysis 513 

To select the best performing model, the simulation results of the calibration and validation period were used to 514 

calculate information criteria statistics. The posterior probability (pk) was calculated using Eq. (8) for AIC, 515 

AICc, BIC and KIC methods. The L2B4 model obtained the highest posterior probability of 1, whereas all other 516 

models had negligible posterior probability for all information criteria as shown in Figure 6. 517 

 518 

Figure 6: Posterior probability (pk) and BMA maximum likelihood weight (βBMA) of alternative models 519 

calculated using 10 years of data. The value above the bar represents the maximum likelihood Bayesian weight. 520 

One of the objectives was to estimate future groundwater levels using model averaging. Ten years (1990–1999) 521 

of monthly simulated groundwater levels of the alternative models and observed data of 50 observation wells 522 

were used as training data in MODELAVG to estimate the maximum likelihood BMA weight (βBMA) of each 523 
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alternative model. The long training period was selected so that a reliable BMA weight can be estimated for 524 

climate change impact analysis. 525 

The performance evaluation statistics of BMA mean prediction along with the best model and median is shown 526 

in supplementary materials (Table SM-6). The best model was selected based on the information criteria ranking. 527 

The prediction of BMA method obtained better performance in all evaluation criteria than the best model and 528 

ensemble median for both periods. The results are in line with the findings of Ye et al., (2004) and Poeter and 529 

Anderson (2005). 530 

During the training period, the 95% prediction interval covers about 85% of observed data, and the average 531 

spread of the 95% prediction interval is 6.23 m. The maximum likelihood BMA weight (βBMA) of all alternative 532 

models is shown in Figure 6. It is observed that models L1B5 and L2B4 obtained higher βBMA than other models. 533 

The model L2B4 has both maximum posterior model probability and higher βBMA. It is noteworthy that the L1B5 534 

model obtained significant βBMA as it had a comparatively poor performance in both calibration and validation 535 

period compared to most of the other models. One possible cause could be the relatively better performance of 536 

the one-layered model in the model boundary area. 537 

Figure 6 shows that only three models (L1B5, L2B4, L2B5) together correspond to 91% of the total weight and 538 

another three models (L2B3, L3B4, L3B5) correspond to 8% of the total weight. The rest of the models had no 539 

significant contribution. The models having low βBMA can be excluded from the analysis to minimize the 540 

calculation time and effort (Vrugt, 2016). Therefore, models L1B5, L2B4 and L2B5 were selected to predict 541 

future groundwater levels under different scenarios. Ultimately, βBMA was recalculated using the prediction of 542 

those selected models and the new βBMA of L1B5, L2B4 and L2B5 was 0.35, 0.39 and 0.26, respectively. During 543 

this recalculation, the 95% prediction interval covers about 82% of observation data meaning exclusion of 12 544 

models resulted in a loss of only 3% of observed data. 545 

3.2 Climate change impact on precipitation, temperature and evapotranspiration 546 

Figure 7a shows the changes in the monthly precipitation amount. Small positive changes in monthly 547 

precipitation amounts are observed for the wet season. For the dry season, in contrary, the changes are less 548 

consistent: decreasing precipitation amounts are found for April and December while March display a significant 549 

increase. The effect of the greenhouse gas scenario (GHS) on the monthly precipitation amount changes is 550 

shown by Figure 7b. One would expect increasing/decreasing change signals under increasing GHSs. This uni-551 

directional behavior is, however, limited to the months July, August, September and November. Most likely, 552 
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2035 is situated before the time of emergence, whereby the effect of the increasing GHS remains mainly masked 553 

by noise inherent to the internal climate variability (Hawkins and Sutton, 2012). This, moreover, indicates that 554 

the months July, August, September and November are most likely more sensitive to the GHSs compared to the 555 

other months. 556 

 557 

Figure 7: Climate impact signal for all selected climate models (1975 – 2035): (a) relative changes in monthly 558 

precipitation amount (all GHS combined), (b) relative changes in monthly precipitation amount as function of 559 

the GHSs, (c) absolute changes in monthly minimum, mean and maximum daily temperature (all GHSs 560 

combined), and (d) relative changes in potential evapotranspiration as function of the GHSs. 561 

Figure 7c presents the climate scenarios for minimum, mean and maximum daily temperature. Generally, higher 562 

increases in minimum and mean daily temperatures are projected during the wet season. An inter-comparison 563 

between the different variables shows, furthermore, higher changes for the minimum daily temperature than for 564 

the mean and maximum daily temperature.  565 

The changes in monthly potential evapotranspiration are shown in Figure 7d. Except for May, increases are 566 

observed for all months. For some months, the changes seem not sensitive to the GHS. Changes for the months 567 
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March, April, June, October and December seem particularly sensitive to the GHS. Similar as for the 568 

precipitation results, a possible explanation can be found in the ―time of emergence‖ concept. 569 

The climate change signals for a representative month in the dry and wet season are included in supplementary 570 

materials (Table SM-8). 571 

3.3 Climate change impact on groundwater recharge  572 

The changes in the monthly groundwater recharge due to climate change are highly uncertain (Figure 8a). Like 573 

precipitation, small increasing changes in monthly groundwater recharge are observed for the wet season. For the 574 

dry season, in contrary, the changes are less consistent. The majority of the global climate model runs project 575 

generally an increasing groundwater recharge. However, for April and December, significant decreases are 576 

noted. The effect of the GHSs on the monthly groundwater recharge changes is shown by Figure 8b. The months 577 

July, August, September and November seem to be more sensitive to the GHSs compared to the other months. 578 

For both RCP 8.5 and RCP 4.5, April and December show decreasing changes in monthly groundwater recharge. 579 

 580 

Figure 8: Change in groundwater recharge due to climate change: (a) relative changes in monthly groundwater 581 

recharge (all GHS combined), (b) relative changes in monthly groundwater recharge as a function of the GHSs. 582 

Projected spatial variation of the mean groundwater recharge change between the future and the baseline period 583 

due to climate change is presented in Figure 9. Spatial variation is observed only for two extreme recharge 584 

scenarios: high recharge scenario is indicating maximum recharge at each time step among all the ensembles and 585 

low recharge scenario is indicating minimum recharge. Both for April and September, the high recharge scenario 586 

shows a zero to positive change in groundwater recharge, while the low recharge scenario shows a zero to 587 

negative change in groundwater recharge. No clear spatial trends are observed in the change of groundwater 588 

recharge. In the high recharge scenario, mean monthly groundwater recharge would increase by 25 mm (April) 589 

and 100 mm (September). In the low recharge scenario, mean monthly groundwater recharge would decrease by 590 
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16 mm (April) and 35 mm (September). Crosbie et al. (2010), also, reported that changes in groundwater 591 

recharge due to climate change are uncertain. 592 

 593 

Figure 9: Spatial variation of mean groundwater recharge change due to climate change for (a) high recharge 594 

scenario in April, (b) low recharge scenario in April, (c) high recharge scenario in September and (b) low 595 

recharge scenario in September. 596 

3.4 Future groundwater level analysis 597 

The baseline and future groundwater levels were simulated using three selected groundwater flow models 598 

(L1B5, L2B4, L2B5). Then, the model average was calculated by Eq. (10) using simulated groundwater levels 599 

and the maximum likelihood Bayesian weight of the respective groundwater flow models. The change in 600 

groundwater level for different scenarios is discussed below. 601 
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3.4.1 Baseline groundwater level simulation 602 

Groundwater levels in the baseline scenario show a decreasing trend. The mean decreasing rate of groundwater 603 

level is 0.18 m/year (Sen’s slope). The summary of the trend analysis for 50 observation wells is shown in 604 

supplementary materials (Table SM-9). The calculated decreasing rate varies spatially and ranges between 0.05 605 

to 0.49 m/year. Mustafa et al. (2017a) studied observed groundwater level data of the same study area and 606 

reported that the average groundwater level dropped by 4.5–4.9 m over the last 29 years at a rate of 0.15–0.17 607 

m/year. The annual groundwater level fluctuation of 3 to 5 m in the baseline scenario is also supported by the 608 

findings of Shamsudduha et al. (2009). Overall, the simulated groundwater levels correspond well with the 609 

findings of other researchers for the baseline period. Therefore, the simulated groundwater level of the baseline 610 

period was used for comparison with the simulated groundwater levels of the future scenarios. 611 

3.4.2 Impact of climate change on groundwater level 612 

Impact of climate change on groundwater level is highly uncertain in the study area (Figure 10a). The 613 

uncertainty ranges of the change in mean monthly groundwater level due to different GCMs and GHSs obtained 614 

from the three selected conceptual groundwater flow models are presented with the box-plot for each month. 615 

Climate change could increase the mean monthly groundwater level by up to 2.5 m and could decrease by 0.5 m. 616 

However, the SDGs suggest 0-0.5 m increase in groundwater level due to climate change. The impact of climate 617 

change seems higher from May to September than from October to April. This seasonal variation of climate 618 

change impact can be explained by the precipitation pattern of the study area (Supplementary materials: Figure 619 

SM-2a). Large precipitation amounts occur from May to October in Bangladesh, so that climate change has a 620 

higher impact on this period. Uncertainty of groundwater level due to climate change is highest from June to 621 

December. The precipitation pattern can also explain the monthly variation of climate change impact 622 

uncertainty. Groundwater levels increase more during the rainy season in a high recharge scenario (high 623 

precipitation), but in a low recharge scenario, groundwater levels decrease due to the lack of recharge in the 624 

rainy seasons. Therefore, the uncertainty band increases in this period for extreme scenarios. Similar to 625 

precipitation and groundwater recharge, the effect of the GHSs are not very significant on groundwater level 626 

changes (Figure 10b). Most of the GCMs project that the increase of groundwater level would be higher for RCP 627 

8.5 compared to RCP 4.5 for all months. 628 
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 629 

Figure 10: Mean monthly change of groundwater levels in the simulated future period (2026-2047) compared to 630 

the baseline period (1980-2006) due to climate change: (a) all GHS combined, (b) as a function of the GHSs. 631 

The impact of climate change on groundwater level also varies spatially. The projected impact of climate change 632 

on groundwater level is relatively higher in the southwestern part (Figure 11) although this pattern does not 633 

correspond to the spatial pattern of groundwater recharge (Figure 9). This can be explained by the effect of the 634 

river on groundwater level. In a high recharge scenario mean monthly groundwater level would increase up to 4 635 

m (April) and 8 m (September). However, in a low recharge scenario, mean monthly groundwater level would 636 

decrease up to 1.6 m. Overall, the impact of climate change on groundwater level was not linear. 637 
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 638 

Figure 11: Spatial variation of mean groundwater level change due to climate change for the (a) high recharge 639 

scenario in April, (b) low recharge scenario in April, (c) high recharge scenario in September, and (b) low 640 

recharge scenario in September. 641 

3.4.3 Future groundwater level under different abstraction scenarios 642 

The mean monthly groundwater level for the PLinear abstraction scenario decreases about 10 to 14 m compared to 643 

the baseline period (Figure 12a). The scenario of PConstant resulted in a 4 to 7 m decrease in groundwater level 644 

(Figure 12b). For the 30% reduced (PReduced_30) abstraction scenario, the mean groundwater level would decrease 645 

about 1.5 to 3.8 m (Figure 12c). Even for the 50% reduced (PReduced_50) abstraction scenario, the mean 646 

groundwater level would decrease about 1.0 to 1.5 m (Figure 12d). Groundwater abstraction in the study area has 647 

to be reduced by 60% compared to the groundwater abstraction rate in 2010, to keep a sustainable groundwater 648 

level (Figure 12e). This indicates that the groundwater abstraction rate of 2010 is much higher than the future 649 

recharge potential. The situation will be worse if the current increasing groundwater abstraction trend continues. 650 
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A spatial variation in groundwater level change for different abstraction scenarios was also observed. In a low 651 

recharge scenario, even for a 30 % reduced (PReduced_30) abstraction scenario, groundwater level decreased about 652 

14 m in the southwestern part of the study area. In a high recharge scenario, on the other hand, groundwater level 653 

increased about 2 m in the northeastern part of the study area for the PReduced_30 abstraction scenario. The results 654 

also show that 50% lower groundwater abstraction than the 2010-rate is not enough to stop groundwater level 655 

declining in the southwestern part of the study area. 656 

 657 
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Figure 12: Monthly mean change in groundwater levels in the simulated future period (2026-2047) compared to 658 

the baseline period (1985-2006) due to groundwater abstraction: (a) for PLinear abstraction scenario; (b) for 659 

PConstant abstraction scenario; (c) for 30 % reduced (PReduced_30) abstraction scenario; (d) for 50 % reduced 660 

(PReduced_50) abstraction scenario and (e) for 60 % reduced (PReduced_60) abstraction scenario. 661 

The summary of annual groundwater level trend analysis of 50 observation wells for the high and low recharge 662 

scenario and for different abstraction scenarios (PLinear, PConstant, and PReduced_30) is shown in Table 2. Only the 663 

significant (p<0.05) trends were considered in this analysis. Scenario PConstant and PReduced_30 have a mean 664 

decreasing rate that is two to three times higher than the baseline scenario. Therefore, proper groundwater 665 

abstraction policy is necessary to maintain sustainable use of this resource. 666 

Table 2: The summary of annual groundwater level trend statistics of 50 observation wells for the baseline 667 

(1985–2006) and simulated future (2026–2047) period under different abstraction scenarios (PLinear, PConstant, 668 

PReduced_30) and recharge scenarios (Low, High). 669 

Statistics 

 
Baseline 

period 

 Simulated future period 

PLinear  PConstant  PReduced_30 

Low High  Low High  Low High 

Slope (m/year) 

Mean   -0.18  -1.10 -1.02  -0.50 -0.47  -0.37 -0.30 

Maximum  -0.05  -0.06 -0.06  -0.03 -0.04  -0.04 -0.09 

Minimum  -0.49  -3.89 -3.71  -1.88 -1.54  -1.13 -0.79 

Median  -0.15  -0.39 -0.38  -0.37 -0.35  -0.27 -0.18 

Standard deviation  0.11  1.23 1.12  0.51 0.40  0.29 0.25 

 670 

3.5 Sources of uncertainty in groundwater level prediction  671 

3.5.1 Alternative conceptual model (CHMs) uncertainty 672 

The 95% prediction intervals of the three best performing models are shown in Figure 13a. The average spread 673 

of the 95% prediction interval of the three alternative CHMs was about 3 m with a maximum spread of about 16 674 

m. It is observed that the spread of the prediction interval is wider for low and high groundwater levels. This is 675 

not surprising as the one-layered model overestimates low groundwater levels and underestimates high 676 

groundwater levels in most of the observation wells. The wide uncertainty band of the alternative CHMs 677 

indicates that the use of a single model in groundwater levels prediction may lead to biased conclusions. 678 
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 679 

Figure 13: The 95% prediction interval of groundwater level of a representative observation well (BOG001) for 680 

(a) different conceptual models and (b) different abstraction scenarios. 681 

3.5.2 Recharge scenarios uncertainty 682 

The average spread of the 95% prediction interval due to recharge scenarios is 1.11 m with a maximum of 6.07 683 

m. The predictive uncertainty due to the recharge scenario is higher during periods with high groundwater levels 684 

and recharge. Although the mean uncertainty resulting from recharge scenarios is relatively lower than for other 685 

sources of uncertainty, there is large temporal and spatial variation in groundwater level prediction due to 686 

recharge scenarios (as described in section 3.4.2). The recharge scenarios were developed using future climate 687 

scenarios of different climate models so that the uncertainty from recharge scenarios represents the uncertainty 688 

from climate scenarios in groundwater levels prediction. This uncertainty analysis suggests that all possible 689 

climate scenarios should be considered to predict groundwater levels with a reliable uncertainty band. 690 
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3.5.3 Abstraction scenarios uncertainty 691 

The 95% prediction interval of groundwater level for different abstraction scenarios increases with time (Figure 692 

13b). The average spread of the 95% prediction interval is 8.38 m and the maximum is 43 m. The uncertainty of 693 

groundwater level related to the abstraction scenario is very high. 694 

3.5.4 Comparison of sources of uncertainties 695 

The uncertainties due to alternative CHMs, recharge scenarios and abstraction scenarios are compared (Figure 696 

14). The spread of the prediction interval of groundwater levels resulting from different CHMs, recharge 697 

scenarios and abstraction scenarios was estimated using Eq. (13), (14) and (15), respectively. The contribution of 698 

each source was calculated based on the median value of the spread of the prediction interval. The contribution 699 

of an individual source is calculated as the ratio of the median value of the spread of the prediction interval for 700 

the respective source to the median value of the spread of the prediction interval for the total uncertainty. The 701 

abstraction scenarios are the dominant source of the total uncertainty in groundwater level prediction in this 702 

overexploited aquifer. About 68% of the total uncertainty arises from the abstraction scenarios. CHM uncertainty 703 

contributed about 23% of total uncertainty. This result is in agreement with the findings by Rojas et al. (2008). 704 

They reported CHM uncertainty contributions up to 30%. In this case, the alternative CHM uncertainty 705 

contribution is higher than the recharge scenario uncertainty contribution, including the greenhouse gas scenario, 706 

climate model and stochastic climate uncertainty contributions. Goderniaux et al. (2015) reported that 707 

uncertainty related to the calibration of hydrological models can be more important than uncertainty related to 708 

climate models in groundwater modeling. The uncertainty due to recharge scenarios was relatively lower than 709 

the other sources but the uncertainty arising from recharge scenarios was very high in the southwestern part of 710 

the study area (described in section 3.4.2). Hence, use of a single model or single recharge or abstraction 711 

scenario may lead to biased estimation of groundwater levels. Therefore, a multi-model and multi-scenario 712 

approach should be used for reliable groundwater levels prediction. 713 
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 714 

Figure 14: Comparison of uncertainties arising from alternative conceptual models, recharge scenarios and 715 

abstraction scenarios. The recharge scenario uncertainty includes the greenhouse gas scenario uncertainty, the 716 

climate model uncertainty and the stochastic uncertainty. 717 

4 Conclusions 718 

The main objective of this study was to quantify groundwater level prediction uncertainty in climate change 719 

impact studies using an ensemble of representative concentration pathways, global climate models, multiple 720 

alternative CHMs and abstraction. In this study, 15 alternative CHMs, 22 climate model runs for representative 721 

concentration pathways 4.5 and 8.5 (in total 44 climate model runs) and 5 groundwater abstraction scenarios 722 

were used to achieve this aim. The BMA technique was used to predict reliable groundwater level using 723 

predictions of alternative CHMs. 724 

It was observed that different conceptual groundwater models (CHMs) can simulate significantly different 725 

groundwater levels due to differences in the number of layers and the boundary conditions. The simple one-726 

layered models were unable to simulate seasonal variation, but had a relatively better performance close to the 727 

model boundaries than the other multi-layered models. The three-layered models were more detailed, but the 728 

performance was not superior to the two-layered models. The performance of the two-layered models was 729 

mostly better than the one-layered and three-layered models. 730 

Ranking of models differed in the calibration and validation period. The best model in the calibration period only 731 

got the 4th rank in the validation period suggesting the importance of the use of multiple CHMs for reliable 732 

prediction. 733 
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The impact of groundwater abstraction on groundwater levels is very high. For 2026–2047, the groundwater 734 

level would decline about 5 to 6 times faster than in the baseline period (1985–2006) if the current increasing 735 

groundwater abstraction trend continues. Even with a 30% lower groundwater abstraction rate compared to the 736 

2010-rate, the mean monthly groundwater level would decrease by up to 14m in the southwestern part of the 737 

study area. Groundwater abstraction has to be reduced by 60% compared to the 2010-rate to keep groundwater 738 

level sustainable. This indicates that the groundwater abstraction rate of 2010 was far higher than recharge 739 

potential. 740 

The differences in groundwater abstraction scenarios were the dominant source of uncertainty in groundwater 741 

level prediction. The uncertainty due to alternative CHMs was also found to be significant and higher than the 742 

uncertainty from the recharge scenarios. The uncertainty due to different recharge scenarios was very high in 743 

southwestern part of study area. Therefore, use of a single model and/or single recharge and abstraction scenario 744 

can lead to biased groundwater levels prediction. 745 

This study suggests that a multi-model approach should be used in groundwater level prediction to avoid biased 746 

estimation of groundwater levels. The BMA is probably the most suitable technique for developing a multi-747 

model average based on the best available data and future alternative scenarios. This study recommends that the 748 

uncertainty due to alternative CHMs, recharge and abstraction scenarios should be considered in future 749 

groundwater levels prediction. 750 
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